https://shikshainsider.com/

(2)

A

Printed Pages: 4

(21119)

Roll No.

BCA-I Sem.

18005

B.C.A. Examination, November 2019

MATHEMATICS-I

(BCA-101)

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt questions from all Sections as per instructions.

Section-A

Note: Attempt all the five question of this section.

Each question carries 3 marks. Veryshort

answer is required. 5×3=15

- 1. Define rank of a matrix.
- 2. Show that $\lim_{x \to 2} \frac{|x-2|}{x-2}$ does not exist.
- Verify Rolle's theorem for the function.

$$f(x) = 2x^3 + x^2 - 4x - 2, x \in [-\sqrt{2}, \sqrt{2}]$$

18005

[P.T.O.

https://shikshainsider.com/

4. Evaluate:

$$\int x^2 e^x dx$$

5. Write the formula of $\vec{a} \cdot \vec{b}$ and $\vec{a} \times \vec{b}$.

Section-B

Note: Attempt any two questions out of the following three questions. Each question carries 71/2 marks. Short answer is required.

 $2 \times 7\frac{1}{2} = 15$

6. Solve the following system of equations by Cramers Rule

$$3x + 4y = 5$$
$$x - y = -3$$

- 7. Differentiate (sin x)
- 8. Evaluate:

$$\int \frac{xe^x}{(1+x)^2} dx$$

Section-C

Note: Answer any three questions out of the following five questions. Each question carries 15 marks. Answer is required in detail. 3×15=45

()

9.

(i)

Given:
$$\overline{a} = \hat{i} + 3\hat{j} - 2\hat{k}$$

$$\vec{b} = -\hat{i} + 3\hat{k}$$

Find $\bar{a} \cdot \bar{b}$ and $|\bar{a} \times \bar{b}|$

(ii) Find the unit vector perpendicular to both the vectors

$$4\hat{i} - \hat{j} + 3\hat{k}$$
 and $-2\hat{i} + \hat{j} - 2\hat{k}$

10. Evaluate the following Integral of limit of sum $\int_{a}^{b} x dx$.

11. Evaluate by L' Hospital rule

(i)
$$\lim_{x \to 1} \frac{x^5 - 2x^3 - 4x^2 + 9x - 4}{x^4 - 2x^3 + 2x - 1}$$

(ii)
$$\lim_{x \to 0} \frac{x - \sin x}{x^3}$$

- 12. (i) Evaluate $\lim_{x \to 0} \frac{x |x|}{x}$
 - (ii) Given $f(x) = \frac{|x|}{x}$, for $x \neq 0$ and f(0) = 0show that f(x) is not continuous at x = 0

18005 [P.T.O.

()

13. (i) Find the Rank of the matirx

$$A = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

(ii) Find the adjoint of the matirx

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

10005